2013年8月6日(火)13:00~ 戦略分野1「予測する生命科学・医療および創薬基盤」 場所/共催:バイオグリッドセンター関西

SCLS計算機システムの実習 ー分子動力学の基礎ー

理化学研究所 HPCI計算生命科学推進プログラム ^{副プログラムディレクタ} 江口至洋 yeguchi@riken.jp

はじめに

東京大学藤谷教授の資料から Fujitani H et al. (2005) J Chem Phys, 123, 084108, Fujitani H et al. (2009) Phys Rev E, 79, 021914

分子動力学計算

- ◆ 原子は「電荷と質量を持つ質点」とする
- ◆ ニュートンの運動方程式を解く
- ◆ 力Fやポテンシャル関数Vの構成原理はない
- ◆ ポテンシャル関数は経験的に決められる
- ✤ そこに含まれるパラメータは、分光学などの実験結果を踏まえ、あるいは量子論により、さらには実験結果と整合性が取れるように決められている
- ◆ それらパラメータを用いた分子動力学計算は、広範な実験結果を 説明し、かつ新たな知見を生み出している
- ◆ ただし、「分子動力学計算が常に最適な選択」というわけではない
 - * 粗視化モデル(例:1残基を1質点でモデル化)、ブラウン動力学、 量子論

- ◆ McCammon et al. (1977) Dynamics of folded proteins. Nature, 267, 585-590 初めてタンパク質(BPTI、58残基)の分子動力学計算を行う。0.978fs刻みで8.8psのシミュレーション。
- Brooks et al. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.
- Pearlman DA et al. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun., 91, 1–41.
- Berendsen H et al. (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56
- Kale L et al. (1999) NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151, 283–312.
- ◆ Lindorff-Larsen K et al. (2011) How Fast-Folding Proteins Fold. Science, 334, 517-520 10~80残基のタンパク質の分子動力学計算を専用計算機を用いて100µsから1ms行い、折り畳み過程を解析して。
- ◆ Zhao G et al. (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature, 497, 643–646 ペタスケールの計算機(Blue Waters)を用いてはじめて、1,300以上もの同一のタンパク質(6,400万原子)からなる巨大なHIVカプシドの原子レベルでの構造を明らかにすることができた。

分子動力学計算の贈り物

- ◆ 計算機顕微鏡として分子の動的動きを見る
- ◆ 自由エネルギーを求める(例:結合の自由エネルギー)
- ◆ 自己拡散係数などの統計量を求める
- ◆ タンパク質の折り畳み過程を見る
- ◆ 生体分子の相互作用に伴う構造変化過程を見る
- ✤ 立体構造の精密化(refinement)を行う

ポテンシャル関数V

empirical potential energy function

ニュートンの運動方程式?

 $m_{i} \frac{d^{2}\vec{r}_{i}(t)}{dt^{2}} = \vec{F}_{i}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N})$ $\vec{F}_i = -\frac{\partial V(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)}{\partial \vec{r}_i}$

V ?

8

標準的なポテンシャル関数V

 $V = \sum_{bonds} \frac{1}{2} K_{ij}^{\ b} (r_{ij} - b_{ij})^2 + \sum_{angles} \frac{1}{2} K_{ijk}^{\ \theta} (\theta_{ijk} - \theta_{ijk}^{\ 0})^2$ $+\sum_{d \in I_{-}} K_{\varphi} (1 + \cos(n\varphi - \varphi_0))$ dihedrals $+\sum_{i\neq j} 4\varepsilon_{ij} \left| \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} \right| + \sum_{i\neq j} \frac{q_{i}q_{j}}{\varepsilon_{0}r_{ij}}$

原子と原子タイプ

アラニル-フェニルアラニン

(原子および原子タイプはGROMACSで力場OPLS-AA/Lを用いたLysozyme解析用.top ファイルから作成)

結合ポテンシャルと結合角ポテンシャル

$$V_{bond} = \sum_{bonds} \frac{1}{2} K_{ij}^{\ b} (r_{ij} - b_{ij})^2 \qquad \checkmark r$$

$$V_{angl} = \sum_{angles} \frac{1}{2} K_{ijk}^{\ \theta} (\theta_{ijk} - \theta_{ijk}^{\ 0})^2 \overset{\bullet}{\overset{\bullet}{\underset{\theta}{\longrightarrow}}}$$

分子内束縛回転ポテンシャル(歪ポテンシャル)

$$V_{\varphi} = \sum_{dihedrals} K_{\varphi} (1 + \cos(n\varphi - \varphi_0))$$

12

van der Waalsポテンシャル

$$V_{vdW} = \sum_{i \neq j} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$$

全ての原子タイプi,jについて求めるのは 困難なため、例えば、Lorentz-Berthelot の組み合わせ則が用いられる。

$$\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}$$
$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}}$$

OPLS力場では両方で幾何平均が用いられている。

$$\sigma_{ij}=\sqrt{\sigma_{ii}\sigma_{jj}}$$

$$\mathcal{E}_{ij} = \sqrt{\mathcal{E}_{ii}\mathcal{E}_{jj}}$$

 V_{vdW}

13

静電ポテンシャル

$$V_{ele} = \sum_{i \neq j} \frac{q_i q_j}{\varepsilon_0 r_{ij}}$$

Ewald法
1. V_{short}はカットオフ近 似で求める。
2. V_{long}は周期境界条件 のイメージセルに関して 無限遠のものまで考慮 して求める。

広義の回転ポテンシャル

$$V_{improper} = \sum_{dihedrals} K_{\varphi} (1 + \cos(n\varphi - \varphi_0))$$

アラニル-フェニルアラニン

(原子および原子タイプはGROMACSで力場OPLS-AA/Lを用いたLysozyme解析用.topファイルから作成)

運動方程式を解く

ニュートンの運動方程式の数値解を求める(常微分方程式の初期値問題)

ニュートンの運動方程式を解く

 $m_{i} \frac{d^{2} \vec{r}_{i}(t)}{dt^{2}} = \vec{F}_{i}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N})$ $\vec{F}_i = -\frac{\partial V(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)}{\partial \vec{r}_i}$

周期境界条件

周期境界条件での計算におい てタンパク質が隣の箱のタンパ ク質を見ないように、タンパク質 と壁面の距離は、カットオフ近 似をするカットオフ半径r_{cutoff}(8 ~14Å)より、大きくする。

一般的に、非共有結合の
 短距離相互作用の計算に
 おいては、minimum
 image convention(最近接
 像の方法)を用いる。

シミュレーションに用いる箱(Unit Cell)

ほぼ球状のタンパク質には、ほぼ球に近い切頂八面体が適している。 溶媒(水)の数は少ない方がいい。→切頂八面体は正六面体の77%。 ("Lysozyme in Water"の実習では、1辺7.01008nmの正六面体の中にリゾチーム1個、水分子10,824個、CI-イオン8個で出発。NVTアンサンブル、NPTアンサンブルの平衡化終了時は、6.98842nmの正六面体になっている。) 運動量を保存するため、向かい合う面は平行にしておく。

http://ja.wikipedia.org/

水のモデル

注)

1L=10²⁴nm³に55.4×6.02²³=3.34×10²⁵個の水が存在する。 1nm³には33.4個の水がある。

タンパク質の時間構造と時間刻み

ニュートンの運動方程式の数値解法

leapfrogik $v(t + \frac{\Delta t}{2}) = v(t - \frac{\Delta t}{2}) + \frac{f}{m}\Delta t$ $r(t + \Delta t) = r(t) + v(t + \frac{\Delta t}{2})\Delta t$ $v(t) = \frac{1}{2} \left\{ v(t + \frac{\Delta t}{2}) + v(t - \frac{\Delta t}{2}) \right\}$

・解法において速度が陽に現れるため、温度などを速度のスケーリングによって直接制御できる。 ・差を求める操作がないため、数値計算上の誤差は生じにくい

温度と圧力の制御

◆ NVEアンサンブル(ミクロカノニカル・アンサンブル)

- * 普通にNewtonの運動方程式を解く
- * 温度や圧力は計算した結果から求める

◆ 温度の制御

- ・ ベレンゼン法(瞬間毎の温度を設定温度Toに徐々に近づける)
- * 速度スケーリング法

- $m_{i} \frac{d^{2}r_{i}(t)}{dt^{2}} = F_{i}(r_{1}, r_{2}, \dots, r_{N}) + \frac{1}{\tau} \left(\frac{T_{0}}{T(t)} 1\right) m_{i} \frac{dr_{i}}{dt} = \tau = 0.01 \sim 0.5 \text{ ps}$
- * 能勢・フーバー法、能勢・ポアンカレ法(NVTアンサンブルを生成する)

◆ 温度と圧力の制御

- ☆ ベレンゼン法(T) +パリネロ・ラーマン法(P)
- ◆ 能勢(T)・アンダーセン(P)法(NPTアンサンブルを生成する)

奥村久士「分子動力学シミュレーションにおける温度・圧力制御」が良い解説論文 http://okweb.ims.ac.jp/r_md.html

分子動力学計算の実行

Lysozyme in waterの実習を例に

典型的なシミュレーションの流れ

- ◆ 構造を得る(通常はPDBから)
- * 欠失領域を埋める(含む、側鎖や水素原子)
- ◆ SS結合の確認、ヒスチジンなどの電荷状態の確認など
- ◆ GROMACSのトポロジーファイルを作る
- ◆ 水分子を付加する(イオンを付加する)
- ◆ 最急降下法などでエネルギーの最小化を行う
- ◆ 平衡化シミュレーションを行う(例:NVT→NPTアンサンブル)
- ◆ プロダクト・ランを行う(タンパク質の重原子を自由にして)
- ◆ シミュレーション結果(trajectory data)を解析する

PDBのATOMレコードとGROMACSの.topファイル

	Atom			Res.									
Record	Serial A	tom]	Res. Chain	n Seq.					'	Temperat	ure Elen	nent	
name	No. na	ame 1	name ID	No.	Ortho	ogonal coc	ordinates	Occu	ipancy	factor	sym	bol	
ΔΤΟΜ	1	N	IVC A	1	25 265	00 240	0_11_0	000	1 00	<u> </u>		N	
ATOM	1	N	LIS A	1	35.305	22.342	2 -11.8	100	1.00	22.20		N	
ATOM	2	CA	LYS A	1	35.892	21.073	3 -11.4	127	1.00	21.12		C	
ATOM	3	С	LYS A	1	34.741	20.264	4 -10.8	344	1.00	16.85		C	
ATOM	4	0	LYS A	1	33.945	20.813	3 -10.0	081	1.00	18.94		0	
ATOM	5	CB	LYS A	1 –	26 079	91 / 20	5 _10 9	206	1 00	90 70		C	
	6	CG	LVS A	1	[atoms]								GROMACSの.topファイル
	7	CD		1	; nr	type	resnr re	esidue	atom	cgnr	charge	mass	• · · ·
ATOM	(CD	LIS A		; residue	1 LYS r	rtp LYSH	q +2.0	0				
ATOM	8	CE	LYS A	1	1	opls_287	1	LYS	N	1	-0.3	14.0067	; qtot -0.3
ATOM	9	NZ	LYS A	1	2	op1s_290	1	LYS	HI	1	0.33	1.008	; qtot 0.03
ATOM	10	Ν	VAL A	2	3	op1s_290	1		HZ U2	1	0.33	1.008	, qtot 0.30
111 0111	1.	11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	4 5 0	opis_290	1			1	0.35	12 011	, qtot 0.09
PDB のA	TOMレコ	ード		166397	6	p_{15}_{2900}	1	LIS	НА	1	0.25	1 008	; qtot 0.54
					7	op15_140	1	LYS	CB	2	-0.12	12,011	; atot 0.88
					8	opls 140	1	LYS	HB1	2	0.06	1.008	; atot 0.94
					9	opls_140	1	LYS	HB2	2	0.06	1.008	; qtot 1
					10	opls_136	1	LYS	CG	3	-0.12	12.011	; qtot 0.88
					11	opls_140	1	LYS	HG1	3	0.06	1.008	; qtot 0.94
				1111	12	opls_140	1	LYS	HG2	3	0.06	1.008	; qtot 1
					13	opls_136	1	LYS	CD	4	-0.12	12.011	; qtot 0.88
					14	opls_140	1	LYS	HD1	4	0.06	1.008	; qtot 0.94
					15	opls_140	1	LYS	HD2	4	0.06	1.008	; qtot 1
				10134	16	opls_292	1	LYS	CE	5	0.19	12.011	; qtot 1.19
					17	op1s_140	1	LYS	HEI	5	0.06	1.008	; qtot 1.25
					18	op1s_140	1		HEZ	5	0.00	1.008	; qtot 1.31
				11.13	19	$op1s_287$	1	LIS	INZ H71	6	-0.3	14.0007	, quot 1.01
					20	$op1s_{290}$	1	IVS	H72	6	0.33	1,008	; qtot 1.54
					22	$opis_230$	1	LYS	HZ3	6	0.33	1.008	atot 2
					23	opls 235	1	LYS	C	7	0.5	12,011	; gtot 2.5
					24	opls_236	1	LYS	Ő	7	-0.5	15.9994	; qtot 2
				1996									• -

charge group(cgnr)は現在ではneighbor-search groupの役割としてある。

http://www.wwpdb.org/documentation/format33/sect9.html

ヒスチジンの構造(OPLS力場での例)

HE1

H

CE1

ND1

HB1

HE1

ND1

HB1

С

CE1

CG

NE2

CB

CA

NE2

CB

HA

H

Η

CD2

HB2 🔎

N

CG

HA

CD2

HB2

N

HE2

HD2

HD2

7							Huse III		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	229	op1s_238	15	HIS	N	75	-0.5	14.0067	; qtot 3.5
	230	opls_241	15	HIS	Н	75	0.3	1.008	; qtot 3.8
	231	opls_224B	15	HIS	CA	75	0.14	12.011	; qtot 3.94
0	232	opls_140	15	HIS	HA	75	0.06	1.008	; qtot 4
	233	opls_505	15	HIS	CB	76	-0.297	12.011	; qtot 3.703
	234	opls_140	15	HIS	HB1	76	0.06	1.008	; qtot 3.763
	235	opls_140	15	HIS	HB2	76	0.06	1.008	; qtot 3.823
	236	opls_507	15	HIS	CG	77	0.504	12.011	; qtot 4.327
	237	opls_511	15	HIS	ND1	77	-0.564	14.0067	; qtot 3.763
	238	op1s_508	15	HIS	CD2	78	-0.261	12.011	; qtot 3.502
	239	opls_146	15	HIS	HD2	78	0.183	1.008	; qtot 3.685
	240	opls_506	15	HIS	CE1	79	0.182	12.011	; qtot 3.867
	241	opls_146	15	HIS	HE1	79	0.098	1.008	; qtot 3.965
	242	opls_503	15	HIS	NE2	80	-0.291	14.0067	; qtot 3.674
	243	opls_504	15	HIS	HE2	80	0.326	1.008	; qtot 4
	244	opls_235	15	HIS	С	81	0.5	12.011	; qtot 4.5
	245	op1s_236	15	HIS	0	81	-0.5	15.9994	; qtot 4

27

トポロジー(.top)ファイル

		-									
[atoms	- 1									GROMACS O. ton ファイル	
; nr	- t	vne	resni	r res	idue	atom	cgnr	charge	mass		
: resid	ue 1		rtn L	VSH a	+2 0)	-0	01102.80			
1	onle	287	100 11	1	IVS	N	1	-0.3	14 0067	: atot -0.3	
2	opis_	201	1	1 1		н	1	0 33	1 008	; gtot 0.03	The second se
2 3	opis_	200		1 1		ир	1	0.33	1,000	; qtot 0.00	
J	opis_	290	-	L 1		112	1	0.00	1.000	, quot 0.50	
4	opis_	290 00D		L 1		ПЭ	1	0.33	1,000	, quot 0.09	
5	opis_2	93B				CA	1	0.25	12.011	, qtot 0.94	and the second s
6	opis_	140				HA	1	0.06	1.008	; qtot I	
	opis_	136		L	LYS	CB	2	-0.12	12.011	; qtot 0.88	
• • •						_	_				
23	opls_	235]	1	LYS	С	7	0.5	12.011	; qtot 2.5	
24	opls_	236	1	1	LYS	0	7	-0.5	15. 9994	; qtot 2	
; resid	lue 2	VAL	rtp V/	AL q	0.0)					
25	opls_	238	2	2 '	VAL	Ν	8	-0.5	14.0067	; qtot 1.5	
• • •											the second s
[bonds	:]										
; ai	aj fu	nct									The second se
1	2	1									
1	3	1									
1	4	1									and the second sec
1	5	1									
	Ŭ	-									the second se
[anglo	. 1										
	o i	ok	funct								
, ai	ај 1	an	1 unct								
4	1	3	1								2^{3} 7
••••		_									
3	1	5	1								
•••	_	~~									23
1	5	23	1								1 5
•••	_										
[dihed	rals]										25
; ai	aj	ak	al	func	t						6 23
2	1	5	6		3						4
2	1	5	7	1	3						
2	1	5	23	:	3						26
[dihed	rals]										
; ai	ai	ak	al	func	t						
5	25	23	24		1	improp	er O C X	Y			
23	27	25	26		1	improp	er 7 N X	v			
20	2.	20	20		-	Improp	01_0_N_A_	•			

実習でのシミュレーションの流れ

理化学研究所 HPCI計算生命科学推進プログラム 波内良樹氏が作成

戦略分野1「予測する生命科学: 医療および創薬基盤」 理化学研究所 HPCI計算生命科学推進プログラム のみなさんに感謝します