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1. General management 

We held two workshops to report on research progress and promote close cooperation. We participated in the 

International Cancer Genome Consortium (ICGC) 6th Scientific Workshop held in France on March 21–22, and 

gathered information regarding large-scale data analysis methods and the status of research on the use of 

next-generation sequencers in cancer genome analysis. We also delivered a talk on large-scale life data analysis at 

the Biophysical Society of Japan’s “High Performance Computational Approaches to Biological Functions” 

symposium held on September 16, 2011. 

In addition to the above, we also held periodical meetings among research program participants to coordinate 

research activities. 

2. Development of data processing system for next-generation sequencer data analysis 

We developed GHOSTX, a sequence homology search tool, and parallelized GHOSTX with an MPI/Open MP 

hybrid to create GHOST-MP. Using the K computer, we optimized the GHOST-MP code and database to improve 

execution speed and parallel performance within and between nodes (Figure 1). 

 

 

Figure 1. Execution times when applying GHOST-MP to metagenomic analysis 

The horizontal axis shows the GHOST-MP version, and vertical axis, execution times. “I/O”, 

“Alignment” and “Search” represent execution times respectively for file I/O, homologous sequence 

alignment, and homologous sequence search. Execution speed was improved with Ver.0.2.5 being 1.7 

times the speed of Ver.0.2.1. 

 

For this research project, we used a suffix array for both query and database sequences to enable GHOSTX to 

perform sensitive, high-speed searches. We compared GHOSTX with the BLAST and BLAT sequence homology 

analysis tools using actual data (fragments of 60–75 bases) from soil microorganism metagenomes and simulated 

data for fragments of about 500 and 1000 bases. To assess sensitivity, we compared agreement of results with 

SSEARCH results, assuming the latter to be correct since the SSEARCH program uses the Smith-Waterman 

algorithm to make very precise calculations of optimum alignments. When we ran GHOSTX using parameters 

prioritized for speed, it proved to be faster than both BLAST and BLAT, completing searches at about 100 times 
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the speed of BLAST. Sensitivity was lower than BLAST, but higher than BLAT. When using parameters 

prioritized for sensitivity, search speed was slower than BLAT, but about 20 times faster than BLAST, while 

delivering similar sensitivity (Figure 2). 

In short, our GHOSTX tool enables homology analysis at the speed and sensitivity required for metagenomic 

analysis.  

 

 

Figure 2. Comparison of the sensitivity of GHOSTX, BLAST and BLAT 

The degree of agreement with the results of SSEARCH is shown for each tool. 

The vertical axis shows agreement rate with SSEARCH results, and horizontal axis, E-values. 

The agreement rates are calculated for each E-values. 
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3. Development of methods for predicting RNA-RNA interaction and comprehensive analysis of RNA data 

Since any analysis of RNA sequence data needs to consider secondary structure in order to produce accurate 

results, comprehensive analysis of RNA data also requires consideration of secondary structure. We accordingly 

developed a method that takes secondary structure into account, and carried out molecular simulation to analyze 

the tertiary structure of RNA molecules. 

To develop methods for analyzing RNA secondary structure, we developed Raccess, a software package that 

computes the accessibility of all the segments of a fixed length for a given RNA sequence, and IPknot, a software 

package for predicting RNA secondary structures with pseudoknots based on maximizing the expected accuracy 

of a predicted structure. We have published papers in international journals on both tools.  

For molecular simulation, we also looked into developing a method that packages coarse-grained modeling of 

RNA molecules with parameters for predicting base-pairing probability and other aspects of RNA secondary 

structure. 

For tertiary structure analysis, we developed RASSIE, a fragment assembly software package for accurately 

predicting RNA tertiary structures by using known secondary structure information. We subsequently published 

details of RASSIE.   

We also developed a long string NGS simulation data assembly tool for RNA-RNA interaction evaluation to 

consider the effectiveness of applying RNA-RNA interaction prediction techniques to comprehensive analysis of 

RNA data. 
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4. Development of large-scale biomolecular network analysis techniques 

We devised a seed network method as a large-scale biomolecular network inference method that incorporates 

biological knowledge, and developed a software prototype for inferring intermolecular control networks. We then 

extended this prototype on the K computer to enable large-scale parallel execution. We named this tool BENIGN 

(Biologically Extensible Network Inference Software for Gene Expression Analysis). 

Table 1 shows BENIGN’s parallel execution performance on the K computer. For data, we used changes in 

gene expression profile during the differentiation of mouse mesenchymal stem cells into adipocytes. The gene set 

that we focused on was 113 genes known to be involved in adipocyte differentiation, and genes encoding 833 

transcription factors that showed changes in expression during differentiation, making for a total of 946 genes.  

 

 

Calculated nodes Execution time (seconds) Speed improvement Parallel efficiency 

6,114 2683 1.00  

12,228 1386 1.94 0.97 

In Table 1, execution time for 6,114 nodes is used as a base for measuring speed improvement and parallel 

efficiency by strong scaling. As the table shows, excellent parallel efficiency of 97% was achieved with the 

execution of 12,228 nodes. 

 

We were also able to confirm the validity of the results of biomolecular network analysis for the process of 

adipocyte differentiation using BENIGN.  

Going forward, we plan to enhance BENIGN’s dynamic load distribution function and other components, and 

make the most of K’s immense processing power by conducting network inference on a whole gene set that 

includes other genes in addition to transcription factor genes. We have also been supplied with an assortment of 

RNA-Seq gene expression data for mouse adipocyte tissue by research colleague Professor Teruo Kawada of 

Kyoto University’s Graduate School of Agriculture, and we plan to use it to attempt the inference of large-scale 

biomolecular networks for total RNA, including miRNA and other non-coding RNA.   

 

 

 

 

 

 

 

 

 

Table 1. BENIGN’s parallel execution performance 
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5. Metagenomic analysis and comparative genome analysis research 

Phylogenetic tree inference involves the 

multiple alignment processing of base 

sequences obtained from genomes to infer 

phylogenetic trees. In conjunction with 

advances in computational performance in 

recent years, the phylogenetic tree inference 

method that we used for this research 

project—the maximum likelihood 

method—is being used increasingly in life 

science research fields, and it has won broad 

acceptance. The maximum likelihood 

method runs comparisons among multiple 

candidate phylogenetic trees to select the 

phylogenetic tree shape that best matches 

the given sequence data. Inferring the best 

tree shape requires the comprehensive 

searching of all candidate phylogenetic trees, but since the number of candidate tree shapes grows exponentially 

to the order of O(2NN!) where N is the number of sequence fragments, the comprehensive searching of whole 

candidate tree shapes for more than a certain number of sequences is theoretically impossible. As such, search 

space needs to be narrowed down when implementing the program in order to enable maximum likelihood 

inference. Since search methods differ according to program, implementing programs on the K computer requires 

different parallel optimization for each program. We accordingly prepared for this research project by first 

investigating programs for their compatibility with the K computer’s parallel architecture (Table 1). Our 

investigation found that RAxML, a program developed by A. Stamatakis and others at Germany’s 

Ludwig-Maximilians University, is the most suitable program, so we used the RAxML code as a base for 

developing our software. 

Since it uses MPI, the RAxML program in principle meets the parallel programming requirements of the K 

computer. However, we found that RAxML could not be used as it is on the K computer because it also 

incorporates other parallelization methods such as p-Thread in parts. We accordingly implemented the program 

with parallelization methods that could be used on the K computer. We compared the parallel efficiency of K’s 

architecture with a PC cluster, and found that the RAxML program is in principle compatible with the K 

computer’s architecture. 

 

Table 1. Comparison of maximum likelihood programs for 

phylogenetic tree inference 

 

ML stands for maximum likelihood, MP for maximum parsimony, 

and BI for Bayesian inference. 


