

A coarse-grained simulator: CafeMol

検崎博生1,

古賀信康¹, 藤原慎司¹, 堀直人¹, 金田亮¹, 李 文飛^{1,2}, 岡崎圭一¹, 姚 新秋¹, 高田彰二^{1,2} ¹京都大学理学研究科生物物理学教室 ² JST-CREST

CafeMol (www.cafemol.org)

- CafeMol 2.1 (2013/7)
 source & manual released
- Features are;
 - Various CG models protein/DNA/RNA multiple basin model accurate CG model
 - Simulating protein-at-work "switching"
- Under development
 lipid

Overview of CafeMol

- General-purpose coarse-grained (CG) biomolecular modeling and simulation software
 - Protein: 1 bead / 1 amino acid
 - Nucleic acid:
 - 3 beads (sugar, base, phosphate) / nucleotide
 - Lipid: ~3 beads / lipid
- Written by FORTRAN90 with MPI and Open MP
- Large-scale simulation
 - ~"millisecond" event by K-computer
- Version 1.0 is released (only protein) (2010/12/27)
 - Version 2.0 (protein, DNA, RNA) (2012/5/31)

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Models and energy functions

1 beads / 1 amino acid

- A. Off-lattice Go model
- B. Atomic interaction based CG model
- C. Multiple basin model
- D. DNA/RNA model
- E. Elastic network model
- F. Electrostatic and hydrophobic interactions
- G. Explicit and implicit ligands

Off-lattice Go model

C. Clementi, H. Nymeyer, and J.N. Onuchic, J. Mol. Biol. (2000)

Based on the energy landscape theory Structure based

$$\begin{aligned} V_{protein} &= V_{local} + V_{go} + V_{ex} \\ V_{local} &= K_b \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^2 + K_{\theta} \sum_{i} \left(\theta_i - \theta_{0i} \right)^2 \\ &+ K_{\phi}^1 \sum_{i} \left(1 - \cos(\phi_i - \phi_{0i}) \right) + K_{\phi}^3 \sum_{i} \left(1 - \cos 3(\phi_i - \phi_{0i}) \right) \\ V_{go} &= \varepsilon_{go} \sum_{i,j}^{native} \left[5 \left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right] \\ V_{ex} &= \varepsilon_{ex} \sum_{i,j}^{nonnative} \left(\frac{\sigma}{r_{ij}} \right)^{12} \end{aligned}$$

Atomic interaction based CG (AICG) model

Wenfei Li

1) Contact energy ε_{ij} from pairwise all-atom (AA) energy $E^{IJ}(R_{IJ}) = \sum_{i \in I} \sum_{j \in J} u_{AA}(r_{ij}) \qquad u_{AA}(r) = V(r) + \Delta G^{GB}_{pol}(r) + \Delta G^{SA}(r)$

2) Coefficients fitted by AA-derived fluctuation (23 proteins)

param	K _b	K _a G	k _a H	k _a E	k _a ^T	k _a C	ε_{ϕ}^{G}	$\varepsilon_{\phi}^{\ H}$	ε_{ϕ}^{E}	ε_{ϕ}^{T}	$\varepsilon_{\phi}^{\ C}$	€ _{nloc}
Av.	109.94	13.40	40.0 3	17.3 2	19.35	11.7 0	0.29	1.76	1.32	0.82	0.81	0.37

Test for fluctuation, structural change, & folding

Multiple-basin model for proteins

K. Okazaki, N. Koga, S. Takada, J.N. Onuchic, and P.G. Wolynes, PNAS (2006)

CG DNA model

Three interactions sites
Phosphate
Sugar
Base
Reproduce various DNA
behavior
Salt-dependent melting
Bubble formation

 Mechanical properties

T.A. Knotts IV, N.Rathore, D.C. Shwartz, and J.J. Pablo, J. Chem. Phys. (2007)

3SPN.1 force field

E.J. Sambrisiki, D.C. Schwartz, and J.J. de Pablo, Knotts, Biophys J. (2009)

$$\begin{aligned} V_{dna} &= V_{local} + V_{stack} + V_{bp} + V_{ex} + V_{qq} + V_{solv} \\ V_{local} &= K_{b1} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{2} + K_{b2} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{4} \\ &+ K_{\theta} \sum_{i} \left(\theta_{i} - \theta_{0i} \right)^{2} + K_{\phi} \sum_{i} \left(1 - \cos(\phi_{i} - \phi_{0i}) \right) \\ V_{stack} &= 4\varepsilon_{1} \sum_{i,j}^{N_{st}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{6} \right] \\ V_{stack} &= 4\varepsilon_{1} \sum_{i,j}^{N_{st}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right] \\ V_{ex} &= 4\varepsilon_{1} \sum_{i,j}^{N_{st}} \left[\left(\frac{\sigma_{0}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0}}{r_{ij}} \right)^{6} \right] + \varepsilon_{1} (if \ r_{ij} < d_{cut}), \\ &= 0 (if \ r_{ij} > d_{cut}) \end{aligned}$$

3SPN.1 force field (electrostatic and solvation interaction)

$$V_{qq} = \sum_{i,j}^{N} \left(\frac{q_{i}q_{j}}{4\pi\varepsilon_{0}\varepsilon(T,C)r_{ij}} \right) e^{-r_{ij}/\kappa_{D}} \text{ Debye-Huckel theory}$$

$$\varepsilon(T,C) = \varepsilon(T)a(C)$$

$$\varepsilon(T) = 249.4 - 0.788T/K + 7.20 \times 10^{-4}(T/k)^{2}$$

$$a(C) = 1.000 - 0.2551C/M$$

$$+ 5.151 \times 10^{-2}(C/M)^{2} - 6.889 \times 10^{-3}(C/M)^{3}$$

$$V_{solv} = \sum_{i

$$\varepsilon_{s} = \varepsilon_{N}A_{I}$$

$$e_{N} = e_{0} (1 - [1.40418 - 0.268231N_{m}]^{-1})$$$$

 $A_{I} = 0.474876(1 + \{0.148378 + 10.9553[Na^{+}]\}^{-1})$

RNA model

N. Hori and S. Takada (2012)

1 nucleotide = 3 beads

 Phosphate (phosphorus atom)
 Sugar (center of ribose ring)
 Base (pyrimidine: N1 atom) (purine: N3 atom)

RNA model (local)

$$V_{\text{total}} = V_{\text{local}} + V_{\text{stack}} + V_{\text{basepair}} + V_{\text{nonlocal}} + V_{\text{exclude}}$$

RNA model (nonlocal)

Elastic network model

Electrostatic and hydrophobic interactions

Debye-Huckel form for electrostatics

$$V_{\rm ele} = \sum_{i < j}^{N} \frac{q_i q_j}{4\pi\epsilon_0 \epsilon_k r_{ij}} e^{-r_{ij}/\kappa_D}$$

HP interactions analogous to ASA

$$V_{\rm HP} = -c_{\rm HP} \sum_{i \in \rm HP} \epsilon_{\rm HP,A(i)} S_{\rm HP}(\rho_i)$$

Count coordination number for each hydrophobic particle

Explicit and Implicit ligands

Explicit ligand; as a rigid molecule

Implicit ligand; MD-MC scheme with ligand-mediated contact

$$V_{protein} \xleftarrow{k_{on}}_{k_{off}} V_{protein} + V_{imp-lig}$$

$$V_{imp-lig} = \sum_{\substack{ligand-mediated \\ contact-pairs}} - c_{lig}\varepsilon_{go} \exp\left[-\frac{(r_{ij}/r_{0ij}-1)^2}{2(\sigma/r_{0ij})^2}\right]$$

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Simulation method

- Dynamics
 - Newtonian dynamics with Berendsen thermostat
 - Langevin dynamics
 - Multi-Particle Collision dynamics (MPC)
- Time integration
 - velocity Verlet algorithm
- Run mode
 - Constant temperature simulation
 - Simulated annealing
 - Auto-search of Tf
 - Replica exchange method
 - Potential "switching"
- Useful option
 - anchor, bridge, pulling, fix, box

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

CafeMol code

• Parallelization

- neighboring list, force, energy
 - →hybrid(MPI+Open MP)
- replica exchange
 - →MPI(temperature/Hamiltonian REMD)

Performance of MPI parallelization

1300 base pairs DNA (7798 particles) BG/L at Riken

High parallelization efficiency

Performance of parallelization at K-Computer

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Native fluctuation by off-lattice Go model

Folding simulation of src SH3 domain

N. Koga, and S. Takada, J. Mol. Biol. (2001)

Example of input file (folding simulation of src SH3)

Sequence/structure

Folding temperature of src SH3 (Auto-search of Tf)

Bi-section method

<<<< job_cntl i_run_mode = 4 i_simulate_type = 1 i_initial_state = 1 >>>> <<<< searching_tf tempk_upper = 500.0 tempk_lower = 100.0 >>>>

****** tf out tempk n state d state p trans tf out 300.000 995 5 ***** tf_out tempk n_state d_state p_trans tf out 400.000 1000 0 ****** tf_out tempk n_state d_state p_trans tf out 350.000 166 835 78 ****** tf_out tempk n_state d_state p_trans tf out 325.000 953 48 19 ****** . . . ***** tf out tempk n state d state p trans tf out 341.406 638 363 98

Folding temperature of some proteins

Protein	Number of amino acid	Folding temperature(K)
albumin binding domain	53	380.4
src SH3 domain	56	342.9
protein G	56	338.2
α -spectrin SH3 domain	57	360.1
Sso7d	64	332.0
protein L	78	374.2
Im9	86	382.0
cytochrom B562	106	352.2

"Switching" simulation

Rotation mechanism of F₁-ATPase by switching Go model

N. Koga, and S. Takada, PNAS (2006)

Conformational change by MBP

K. Okazaki, N. Koga, S. Takada, J.N. Onuchic, and P.G. Wolynes, PNAS (2006)

<<<< unit_and_state $i_seq_read_style = 1$ i_go_native_read_style = 1 protein 1GGG_2.pdb 1a 1WDN 2.pdb protein >>>> <<<< energy_function NLOCAL(1a/1a) GO EXV NLOCAL(1b/1b) GO EXV MULTIGO_SYSTEM(1a) 1a/1a MULTIGO_SYSTEM(1b) 1b/1b i_use_atom_protein = 0 i_use_atom_dna = 0 >>>> <<<< multiple go bdemax_mgo = 100.0 baemax mgo = 1.0 $dihemax_mgo = 0.5$ ENEGAP(1)(1) 0.0 -1.8 DELTA(1ab) 28.0 >>>>

CafeMol

Sliding movement of KIF1A

R. Kanada, et al PLOS Comp Biol (in press)

1 phase: multiple-basin (T, D) 2 phase: go(D) 3 phase: multiple-basin(D, phi) 4 phase: go(phi) 5 phase: go(T)

KIF1A:blue tubulin:green cargo:yellow

DNA duplex

- 30 bp oligomer of DNA
- Langevin dynamics (300K)
- [Na⁺] = 69mM

<<<< unit_and_state i_seq_read_style = 2 i_go_native_read_style = 3 1-2 dna sequence >>>> <<<< energy_function DH LOCAL(1-2) L_BDNA NLOCAL(1-2/1-2) DNA ELE $i_use_atom_protein = 0$ 3SPN.1 $i_use_atom_dna = 0$ >>>> Intra mol 1,2 <<<< electrostatic Inter mol 1-2 $cutoff_ele = 20.0$ ionic_strength = 0.069 diele water = 78.0>>>> <<<< in box xbox = 120.0ybox = 120.0zbox = 120.0boxsigma = 4.0>>>>

Simulation of nucleosome

Electrostatic interaction +
 Go potential

 $\epsilon_{go} \,^{pro-dna} = 0.5 \epsilon_{go} \,^{pro}$ [Na⁺] = 50mM

```
<<<< energy_function
NLOCAL(1-2/1-2) ELE DNA
NLOCAL(1-2/3-10) GO EXV ELE
NLOCAL(3-10/3-10) GO EXV
i_use_atom_protein = 0
i_use_atom_dna = 0
>>>>
<<<< electrostatic
cutoff_ele = 20.0
ionic_strength = 0.05
diele_water = 78.0
>>>>
```

protein-DNA Go potential H. Kenzaki, et al unpublished data

 ϵ_{ao} pro-dna:coefficient of

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Acknowledgement

CafeMol development has been supported by Research and Development of the Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology.